
Tools and Procedures at GRS to Automatically

Compare and Modify Fault and Event Trees

Joachim Herb, GRS

2012-12-10/11

Next Generation PSA Software, Methods,

and Model Representation Standards

Paris, France

Motivation

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 2

PSA have become state-of-the-art since several decades (e.g. in Germany PSA are

obligatory since the 1990s)

New versions of a PSA are based on already reviewed older versions

Therefore it is important to identify the differences between different versions of a

PSA

Several fault tree analysis cases (e.g. of highly redundant systems) require

structurally similar fault trees

 Modeling of common cause failures

 Modeling of digital I&C systems

Generate fault trees “automatically”, i.e. let the computer do the work

Create a programming language (domain specific language) to model

fault trees

 Most PSA in the world (and all within Germany) use RiskSpectrum®

Common interface to stored models and data

Bottom-up

 Start from parameters

 Find effects on

• Basic events

• Fault trees

• Function events

• Event trees’ sequences and

consequences

Event trees

Function
events

Fault trees

Basic
events

Para-
meters

Top-down

 Start from event trees:

• Compare sequences and

consequences

 Recursively check for changes in

• Function events

• Fault trees

• Basic event

• Parameters

Review Approaches for PSA Updates

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 3

Event trees

Function
events

Fault trees

Basic
events

Para-
meters

Bottom-up

 Start from parameters

 Find effects on

• Basic events

• Fault trees

• Function events

• Event trees’ sequences and

consequences

Event trees

Function
events

Fault trees

Basic
events

Para-
meters

Review Approaches for PSA Updates

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 4

Architecture of GRS Tools to Support the Review of PSA Changes

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 5

Library of classes representing:

 Event trees

 Fault trees (Fault tree pages)

 Parameters

Different tools:

 Extract data, fault/event tree models from RiskSpectrum®

 Identify differences of fault/event trees

Find fault trees which are part of different versions of the PSA

Starting from the TOP gate, check for changes of these fault trees:

 Type of node (AND, OR, K/N, basic event, transfer gate, …)

 Transfer source (fault tree used as input for transfer gate)

 ID of node

Repeat recursively for all children nodes

Output differences-graphs in pdf files

GRS Tool: Generate Differences-Graphs of Fault Trees

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 6

GRS Tool: Generate Differences-Graphs of Fault Trees

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 7

GRS Tool: Generate Differences-Graphs of Fault Trees

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 8

GRS Tool: Trace Dependencies and Changes of Fault Tree Logic

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 9

”Expand“ fault trees up- or downwards:

Replace recursively all transfer gates through the referenced fault trees

Downward expansion:

 Generate lists of all gates and basic events connected to a specified TOP gate

 Mark a specified fault tree as recursively equal, if:

• Fault tree (page) itself has not changed

• All fault trees (pages) referenced by input transfer gates have not changed

 For a not recursively equal fault tree output the differing referenced fault trees

(pages)

Upward expansion:

 Generate list of all TOP gates affected by changes in a certain fault tree

Example for Downward Expansion

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 10

Example for Downward Expansion

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 11

Example Applications of the GRS Tools

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 12

 Review of an updated L1 PSA

 Quality assurance processes during establishment of a Fire PSA

Case # of Fault
Trees

of Differing
Fault Trees

of Event
Trees

of Differing
Event Trees

Review (PSA L1) 2554/2570 53 37/38 17

Fire PSA 1902/1928 616 75/75 33

Data Link to Modify RiskSpectrum® Database using GRS RiskLang

Internal data link to RiskSpectrum®

 RiskLang parser generates Ruby objects

 Open source library ActiveRecord is used to map these

objects onto the tables in the RiskSpectrum® database

 Data are added to RiskSpectrum® database through

ODBC-drivers using SQL commands

Housekeeping

 All imported data are tagged in RiskSpectrum®

 User and edit date is set to new value

 Review/approval information is reset

Export fault trees from RiskSpectrum® in RiskLang

 Generate templates

RiskSpectrum
PSA Professional

RiskSpectrum
.NET

MS Access
ODBC Driver

MS SQL Server
ODBC Driver

Active Record
Abstraction Layer

RiskLang
Parser

RiskLang
Representation of

Fault Trees

13 Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France

RiskLang Specification to Model Fault Trees

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 14

Based on the programming language Ruby

Add three commands to create fault trees, fault tree nodes, basic events/gates

Command Argument Data Type Required Event Types RiskSpectrum® Equivalent

FT :ID String (max length 21) Yes :circle Basic event

:Top FTNode Yes :diamond Diamond basic event

:Text String Optional :house House event

FTNode :Event Event Yes :orgate OR gate

:Transfer Event Yes :andgate AND gate

:Pos Integer Optional :kofn K/N gate

:InLevel Integer Optional :norgate NOR gate

:Children Array of FTNode Optional :nandgate NAND gate

Event :ID String (max length 21) Yes :xorgate XOR gate

:Type Event Type Yes :comment Comment gate

:Text String Optional :continue Continuation gate

:Model Integer Optional :notfound -

:CalcType Integer Optional

Exemplary Fault Tree

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 15

TOP of EX1

TOP1

OR1

Basic element 1

B1
q=1,00E-03

3
Q=1,00E-03

Basic element 2

B2
q=2,00E-03

3
Q=2,00E-03

AND1

Basic element 3

B3
q=3,00E-03

3
Q=0,00E+00

Basic element 4

B4
q=1,00E-03

3
Q=1,00E-03

Exemplary Fault Tree

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 16

TOP of EX1

TOP1

OR1

Basic element 1

B1
q=1,00E-03

3
Q=1,00E-03

Basic element 2

B2
q=2,00E-03

3
Q=2,00E-03

AND1

Basic element 3

B3
q=3,00E-03

3
Q=0,00E+00

Basic element 4

B4
q=1,00E-03

3
Q=1,00E-03

require "RiskRobot/ParseFT"

RiskSpectrumConnection.init('C:\temp\k2.rpp')

FT(:ID=>"EX1", :Text=>"Example fault tree", :top=>

 FTNode(:Event=>Event(:ID=>"TOP1", :Type=>:orgate, :CalcType=>1,

 :Text=>"TOP of EX1"), :Pos=>1, :InLevel=>0, :Children=>[

 FTNode(:Event=>Event(:ID=>"OR1", :Type=>:orgate, :CalcType=>1),

 :Pos=>1, :InLevel=>1, :Children=>[

 FTNode(:Event=>Event(:ID=>"B1", :Type=>:circle, :Model=>3, :CalcType=>1,

 :Text=>"Basic element 1"), :Pos=>1, :InLevel=>1),

 FTNode(:Event=>Event(:ID=>"B2", :Type=>:circle, :Model=>3, :CalcType=>1,

 :Text=>"Basic element 2"), :Pos=>2, :InLevel=>1)

]),

 FTNode(:Event=>Event(:ID=>"AND1", :Type=>:andgate, :CalcType=>1),

 :Pos=>3, :InLevel=>1, :Children=>[

 FTNode(:Event=>Event(:ID=>"B3", :Type=>:circle, :Model=>3, :CalcType=>1,

 :Text=>"Basic element 3"), :Pos=>3, :InLevel=>1),

 FTNode(:Event=>Event(:ID=>"B4", :Type=>:diamond, :Model=>3, :CalcType=>1,

 :Text=>"Basic element 4"), :Pos=>4, :InLevel=>1)

])

])

)

System Overview of Generic Digital I&C Example

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 17

PU1.A

LM7

VU1.A

F1

ECCP1SV1-4

LM1 LM2 LM3 LM4

AU1.A

AIM1 AIM2

LM1 LM2 LM3 LM4

CM1 CM2

AU2.A

AIM1 AIM2

LM1 LM2 LM3 LM4

CM1 CM2

AU3.A

AIM1 AIM2

LM1 LM2 LM3 LM4

CM1 CM2

AU4.A

AIM1 AIM2

LM1 LM2 LM3 LM4

CM1 CM2

LM5 LM6 LM8

CM1 CM2

CM3 CM4

LM1 LM2 LM3 LM4

CM1 CM2

DOM1.CH1 DOM1.CH2

PU2.A

LM1 LM2 LM3 LM4

LM5 LM6 LM7 LM8

CM1 CM2

CM3 CM4

VU2.A

ECCP2SV1-4

LM1 LM2 LM3 LM4

CM1 CM2

DOM1.CH1 DOM1.CH2

PU3.A

LM1 LM2 LM3 LM4

LM5 LM6 LM7 LM8

CM1 CM2

CM3 CM4

VU3.A

ECCP3SV1-4

LM1 LM2 LM3 LM4

CM1 CM2

DOM1.CH1 DOM1.CH2

PU4.A

LM1 LM2 LM3 LM4

LM5 LM6 LM7 LM8

CM1 CM2

CM3 CM4

VU4.A

ECCP4SV1-4

LM1 LM2 LM3 LM4

CM1 CM2

DOM1.CH1 DOM1.CH2

T1L1 F2T2L2 F3T3L3

F4T4L4

AIM Analogous Input Module

ASM Analogous Signal Module

AU Acquisition Unit

BP Backplane

CM Communication Module

CP Communication Processor

DIM Digital Input Module

DOM Digital Output Module

ECCP Emergency Core Cooling Pump

F Flow Sensor

L Level Sensor

LM Link Module

PM Processing Module

PU Processing Unit

SV Solenoid Valve

T Temperature Sensor

VU Voting Unit

Generic Fault Trees of Digital I&C System

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 18

 ∑ = 1052

Fault Tree ID

(wildcards #{r}, #{r2}, #{m}, #{comb})

Description Number of fault

trees

2O4_VU#{r}.A_#{comb}_#{m} OR of all combinations leading to a failure of 2 out of

for 4 voter

372

AU#{r}.A_#{m}_FNSS Non-self-signaling failure AU 12

AU#{r}.A_FSS Self-signaling failure AU 4

COM_AU#{r}.A_PU#{r2}.A Failure communication AU->PU 16

COM_PU#{r}.A_VU#{r2}.A Failure communication PU->VU 16

ECCP#{r}_#{m} Failure to start ECCP 8

F2M_PU#{r}.A_#{comb}_#{m} All combinations leading to a failure of second min

processing unit

516

OUT_AU#{r}.A_#{m}_FNSS Non-self-signaling failure of output AU 12

OUT_AU#{r}.A_#{m}_FSS Self-signaling failure of output AU 12

OUT_PU#{r}.A_#{m}_FNSS Non-self-signaling failure of output PU 12

OUT_PU#{r}.A_#{m}_FSS Self-signaling failure of output PU 12

PU#{r}.A_FNSS Non-self-signaling failure PU 4

PU#{r}.A_FSS Self-signaling failure PU 4

PU#{r}_F2M_#{m}_FNSS Non-self-signaling failure of second min due to input

failures from AU in PU

12

SIG_RED#{r}_FSS_#{m} Self-signaling failure of analogous input AU 12

SV#{r}_#{m} Failure to control SV 8

VU#{r}.A_FNSS Non-self-signaling failure VU 4

VU#{r}.A_FSS Self-signaling failure VU 4

VU#{r}_2O4_#{m}_FNSS Non-self-signaling failure of 2 out of 4 due to input

failures from PU in VT

12

Conclusions

Next Generation PSA Software, Methods, and Model Representation Standards, Paris, France 19

Use cases exists besides the „normal“ application of PSA software

(FT, consequence, sequence, importance, MCS analyses):

 Provide data for documentation

 Modify existing ET/FT models or create new ones automatically

 Trace chances

 Review

 …

Lessons learned: One software product can not foresee all user requirements

Need an interface (open file format or programming interface) to extend PSA

software (i.e. RiskSpectrum®):

✔ Import/export PSA models and data (partly implemented by GRS database

link/via OpenPSA file format)

✘ Trigger computations

✘ Access results of analyses

✘ Call (external) user defined functions from PSA software

